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Abstract. In this paper, a type of closed sets, called ∗-1-closed sets, is introduced and studied in an ideal
topological space. The class of such sets is found to lie strictly between the class of all closed sets and that
of generalized closed sets of Levine [5]. We give some applications of ∗-1-closed set and ∗-1-open set in
connection with certain separation axioms.

1. Introduction and Preliminary

As is noticed from the recent literature, there has been a growing trend among some topologists to
introduce and study generalized types of closed sets. In 1970, Levine [5] first introduced the novel idea of
generalized closed (1-closed, for short) sets, a generalization of closed sets having their own meaningful
facets. Moreover 1-closed sets were further generalized by Dontchev et al. [2] in an ideal topological space
and the said concept of Dontchev et al. has been investigated extensively by Navaneethakrishnan and
Joseph [6]. After that many topologists have studied this concept from different angles (for instance see
[7], [8], [9] and so on). Following the trend, we have introduced and investigated a kind of generalized
closed sets in an ideal topological space. The notion of ideals in general topological spaces is treated in the
classic text by Kuratowski [4] and also in [10]. A collection I ⊆ P(X) is called an ideal on X if it satisfies the
following two conditions:
(i) A ∈ I and A ⊇ B⇒ B ∈ I, and
(ii) A ∈ I , B ∈ I ⇒ A

⋃
B ∈ I.

LetI be an ideal on a topological space (X, τ) and ifP(X) denotes the set of all subsets of X, a set operator
(.)∗ : P(X) → P(X), called a local function [4] of A with respect to τ and I, was defined as follows: for
A ⊆ X, A∗(I, τ) = {x ∈ X : U

⋂
A < I for every U ∈ τ(x)}, where τ(x) = {U ∈ τ : x ∈ U}. It was also shown in
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[3, 4] that the operator cl∗(.), defined by cl∗(A) = A
⋃

A∗(I, τ), is a Kuratowski closure operator giving rise
to a topology τ∗(I, τ) on X, called the ∗-topology, finer than τ. When there is no chance for confusion, we
will simply write A∗ for A∗(I, τ) and τ∗ for τ∗(I, τ). If I is an ideal on a space (X, τ), then (X, τ,I) is called
an ideal topological space. The members of τ∗ are called τ∗-open or simply ∗-open sets and the complement
of a ∗-open set is called a ∗-closed set or equivalently, a subset A of X is called ∗-closed if A∗ ⊆ A. A subset
A of X is said to be 1-closed [5] if cl(A) ⊆ U whenever A ⊆ U and U is open in X; and the complement of a
1-closed subset in X is called a 1-open set in X. A subset A of an ideal space (X, τ,I) is said to be I1-closed
[2] if A∗ ⊆ U (or equivalently cl∗(A) ⊆ U) whenever A ⊆ U and U is open in (X, τ). A subset A of X is said to
be I1-open if X \ A is I1-closed.

In Section 2, we shall introduce a new class of generalized closed sets, termed ∗-1-closed, in an ideal
topological space. This class of ∗-1-closed sets lies strictly between the class of closed sets and the class of
1-closed sets. We obtain several characterizing properties of ∗-1-closed sets. At the end of the section a
precise form of ∗-1-closed set is also incorporated.

In the next section of this paper, we characterize regular and normal spaces in terms of the introduced
class of sets. Also we define stronger forms of regularity as well as of normality and investigate their
properties.

In the last section of this paper, we continue with certain applications of ∗-closed sets and I1-closed
sets where we define ∗-R0-space and I-R0-space respectively, one being stronger and the other weaker than
R0-space. We shall give several characterizing conditions for the introduced types of R0-spaces.

In what follows in this paper, a space X will always be taken to stand for a topological space (X, τ). For
any A ⊆ X, int(A) and cl(A) will respectively stand for the interior and closure of A in (X, τ). Whenever we
say that a subset A of a space X is open (or closed) it will mean that A is open (or closed) in (X, τ). For open
and closed sets with respect to any other topology on X, e.g. τ∗, we would write τ∗-open or simply ‘∗-open’
and ‘∗-closed’.

2. ∗-Generalized Closed Sets

This section is devoted to the introduction and study of a kind of generalized closed sets in an ideal
topological space (X, τ,I), termed ∗-1-closed set. We obtain some characterizations and properties of such
sets. Our proposed definition of ∗-1-closed sets goes as follows:

Definition 2.1. Let (X, τ,I) be an ideal topological space and A ⊆ X. Then A is said to be a ∗-1-closed set if
cl(A) ⊆ U whenever A ⊆ U and U is ∗-open.
The complement of a ∗-1-closed set is called a ∗-1-open set.

Remark 2.2. (a) Since every open set is a ∗-open set, it follows that every ∗-1-closed set is 1-closed in any
ideal topological space (X, τ,I). But the converse is false as is shown in Example 2.3(a).
(b) Since τ ⊆ τ∗, we have every ∗-1-closed set is 1-closed in (X, τ∗). At this point it is quite pertinent to raise
the question whether the class of 1-closed sets in (X, τ∗) is same as that of ∗-1-closed sets in (X, τ,I). The
following Example 2.3(b) answers the question in the negative.

Example 2.3. (a) Let (X, τ,I) be an ideal topological space, where X = {a, b, c}, τ = {φ, {a},X} and I = {φ, {c}}.
Then τ∗ = {φ, {a}, {a, b},X}. Consider a set B = {b}. Then it is easy to check that B is 1-closed but not ∗-1-closed.
Also it is to be noted that the set C = {c} is ∗-1-closed but it is not a closed set. Thus we can say that the class
of ∗-1-closed sets lie between the class of closed sets and the class of 1-closed sets.
(b) Consider the ideal topological space (X, τ,I), where X = {a, b, c}, τ = {φ, {a}, {b}, {a, b},X} and I = {φ, {b}}.
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Then τ∗ = {φ, {a}, {b}, {a, b}, {a, c},X}. Let A = {b}. Then A is 1-closed in (X, τ∗) but is not ∗-1-closed in (X, τ,I).
Also it is noted that the ∗-closed set A is not a ∗-1-closed set.

Theorem 2.4. Let (X, τ,I) be an ideal topological space. Then the union of finite number of ∗-1-closed sets
is ∗-1-closed.
Proof. Let A and B be two ∗-1-closed sets in an ideal topological space (X, τ,I). Suppose that A

⋃
B ⊆ U,

where U is ∗-open. Then A ⊆ U and B ⊆ U ⇒ cl(A) ⊆ U and cl(B) ⊆ U ⇒ cl(A
⋃

B) = cl(A)
⋃

cl(B) ⊆ U ⇒
A
⋃

B is a ∗-1-closed set.

Example 2.5. The intersection of two ∗-1-closed sets is not necessarily a ∗-1-closed set. In fact, let X = {a, b, c},
τ = {φ, {b},X} and I = {φ}. Let A = {a, b} and B = {b, c}. Then A and B are ∗-1-closed, but A

⋂
B = {b} is not

∗-1-closed.

The following result gives some characterizing conditions of ∗-1-closed sets:

Theorem 2.6. Let (X, τ,I) be an ideal topological space and A ⊆ X. Then the following are equivalent:
(a) A is a ∗-1-closed set.
(b) For each x ∈ cl(A), cl∗({x})

⋂
A , φ.

(c) cl(A) \ A contains no nonempty ∗-closed sets.
Proof. (a)⇒(b): Suppose that x ∈ cl(A). If possible, let cl∗({x})

⋂
A = φ. Then A ⊆ X \ cl∗({x}) ⇒

cl(A) ⊆ X \ cl∗({x}) (by (a))⇒ cl(A)
⋂

cl∗({x}) = φ, a contradiction.
(b)⇒ (c): Suppose that F ⊆ cl(A) \ A, where F is nonempty and ∗-closed. If x ∈ F, then x ∈ cl(A) and so by
(b), φ , cl∗({x})

⋂
A ⊆ F

⋂
A ⊆ (cl(A) \ A)

⋂
A, a contradiction. Thus F = φ.

(c)⇒ (a): Suppose that A ⊆ U, where U is ∗-open. Then cl(A)
⋂

(X \ U) ⊆ cl(A)
⋂

(X \ A) = cl(A) \ A. Since
cl(A)

⋂
(X\U) is ∗-closed, it follows by (c) that cl(A)

⋂
(X\U) = φ. Thus cl(A) ⊆ U and hence A is a ∗-1-closed

set.

Theorem 2.7. Let (X, τ,I) be an ideal topological space. Let A and B be subsets of X such that A ⊆ B ⊆ cl(A)
and A is a ∗-1-closed set. Then B is also ∗-1-closed.
Proof. Let B ⊆ U, where U is ∗-open. Then A ⊆ U and A is ∗-1-closed⇒ cl(A) ⊆ U ⇒ cl(B) ⊆ U ⇒ B is a
∗-1-closed set.

Remark 2.8. It may so happen that that two subsets A, B of a space X are ∗-1-closed and A ⊆ B, but B * cl(A).
In fact, let X = {a, b, c}, τ = {φ, {c}, {a, b},X} and I = {φ, {c}}. Then (X, τ,I) is an ideal topological space. Let
A = {a} and B = {a, c}. Then A and B are ∗-1-closed sets, but A ⊆ B * cl(A).

Theorem 2.9. Let (X, τ,I) be an ideal topological space and A(⊆ X) be a ∗-1-closed set. Then A is closed if
and only if cl(A) \ A is ∗-closed.
Proof. Let A be closed, then cl(A) \ A = φ and so cl(A) \ A is ∗-closed.
Conversely, suppose that cl(A) \ A is ∗-closed. Since A is ∗-1-closed, by Theorem 2.6, cl(A) \ A = φ and so A
is closed.

Theorem 2.10. For an ideal topological space (X, τ,I), the following are equivalent:
(a) Every ∗-open set is closed.
(b) Every subset of X is ∗-1-closed.
Proof. (a)⇒ (b): Let A ⊆ X and A ⊆ U where U is ∗-open. Then by (a), U is closed and so cl(A) ⊆ cl(U) = U.
Thus A is ∗-1-closed.
(b)⇒ (a): Let U be a ∗-open set. Then by (b), U is ∗-1-closed and hence cl(U) ⊆ U⇒ U is closed.

Corollary 2.11. Let (X, τ,I) be an ideal topological space. If A is ∗-open and ∗-1-closed then A is closed.

Theorem 2.12. Let (X, τ,I) be an ideal topological space and A ⊆ X. Then A is ∗-1-open if and only if



D. Mandal, M. N. Mukherjee / Filomat 29:5 (2015), 1113–1120 1116

F ⊆ int(A) whenever F ⊆ A and F is a ∗-closed set.
Proof. Suppose that A is ∗-1-open and F ⊆ A, where F is ∗-closed. Then X \ A ⊆ X \ F. Since X \ A is
∗-1-closed, cl(X \ A) ⊆ X \ F⇒ F ⊆ int(A).
Conversely, let the condition hold. Let X \ A ⊆ U, where U is ∗-open. Then X \ U ⊆ A where X \ U is
∗-closed and so by hypothesis, X\U ⊆ int(A)⇒ cl(X\A) ⊆ U⇒X\A is a ∗-1-closed set⇒A is a ∗-1-open set.

Theorem 2.13. Let (X, τ,I) be an ideal topological space and A, B be subsets of X such that int(A) ⊆ B ⊆ A.
If A is ∗-1-open then B is also ∗-1-open.
Proof. Follows from Theorem 2.7.

Theorem 2.14. Let (X, τ,I) be an ideal topological space and A ⊆ X. Then A is ∗-1-open if and only if U = X
whenever int(A)

⋃
(X \ A) ⊆ U and U is ∗-open.

Proof. Let A be ∗-1-open and int(A)
⋃

(X \A) ⊆ U, where U is ∗-open. Then X \U ⊆ X \ (int(A)
⋃

(X \A))⇒
X \U ⊆ cl(X \ A) \ (X \ A). Since X \ A is ∗-1-closed, by Theorem 2.6, it follows that X \U = φ⇒ U = X.
Conversely, suppose that F ⊆ A, where F is ∗-closed. Then int(A)

⋃
(X \ A) ⊆ int(A)

⋃
(X \ F). Therefore by

hypothesis, int(A)
⋃

(X \ F) = X⇒ F ⊆ int(A)⇒ A is ∗-1-open (by Theorem 2.12).

Theorem 2.15. Let (X, τ,I) be an ideal topological space and A ⊆ X. Then A is ∗-1-closed if and only if
cl(A) \ A is ∗-1-open.
Proof. Let A be ∗-1-closed. Let F ⊆ cl(A) \ A, where F is ∗-closed. Then by Theorem 2.6, F = φ. Thus
F ⊆ int(cl(A) \ A) and hence by Theorem 2.12, cl(A) \ A is ∗-1-open.
Conversely, let A ⊆ U, where U is ∗-open. Then cl(A)

⋂
(X\U) ⊆ cl(A)

⋂
(X\A) = cl(A)\A. Since cl(A)

⋂
(X\U)

is ∗-closed and cl(A) \ A is ∗-1-open, by Theorem 2.12 we have, cl(A)
⋂

(X \ U) ⊆ int(cl(A) \ A) = φ. Thus
cl(A) ⊆ U. Hence A is ∗-1-closed.

Theorem 2.16. Let (X, τ,I) be an ideal topological space. Then for each x ∈ X, either {x} is ∗-closed or
∗-1-open.
Proof. Let x ∈ X be such that {x} is not ∗-closed. Then X is the only ∗-open set containing X \ {x} ⇒ X \ {x} is
∗-1-closed⇒ {x} is ∗-1-open.

Theorem 2.17. A subset A of an ideal topological space (X, τ,I) is ∗-1-closed if and only if A = F \N where
F is closed and N contains no nonempty ∗-closed set.
Proof. Let A be a ∗-1-closed set. Then by Theorem 2.6, cl(A) \ A = N(say) contains no nonempty ∗-closed
set. Let F = cl(A). Therefore F \N = cl(A) \ (cl(A) \ A) = A.
Conversely, let A = F \ N, where F is closed and N contains no nonempty ∗-closed set. Let A ⊆ U, where
U is ∗-open. Thus F \ N ⊆ U⇒ F

⋂
(X \ U) ⊆ N. Since F

⋂
(X \ U) is a ∗-closed set, F

⋂
(X \ U) = φ and so

F ⊆ U. Now A ⊆ F⇒ cl(A) ⊆ F ⊆ U⇒ A is ∗-1-closed.

3. ∗-1-Regular and ∗-1-normal spaces

In this section, we shall introduce and investigate two kinds of separation axioms, termed ∗-1-regularity
and ∗-1-normality, stronger than regularity and normality respectively. Before that we prove two results
providing characterizations of regularity and normality of a topological space in terms of ∗-1-open sets.

Theorem 3.1. Let (X, τ,I) be an ideal topological space. Then the following are equivalent:
(a) (X, τ) is regular.
(b) For each closed set F and each x < F, there exist an open set U and a ∗-1-open set V such that x ∈ U,
F ⊆ V and U

⋂
V = φ.

(c) For each A ⊆ X and each closed set F in X with A
⋂

F = φ, there exist an open set U and a ∗-1-open set V
such that A

⋂
U , φ, F ⊆ V and U

⋂
V = φ.
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Proof. (a)⇒ (b): Follows from the fact that every open set is a ∗-1-open set.
(b)⇒ (c): Let A ⊆ X and F be a closed set in X such that A

⋂
F = φ. Then by (b), for each x ∈ A, there exist

an open set U and a ∗-1-open set V such that x ∈ U, F ⊆ V and U
⋂

V = φ. Thus A
⋂

U , φ, F ⊆ V and
U
⋂

V = φ.
(c)⇒ (a): Let F be a closed set and x < F. Then by (c), there exist an open set U and a ∗-1-open set V such
that x ∈ U, F ⊆ V and U

⋂
V = φ. Since F ⊆ V and V is ∗-1-open, by Theorem 2.12, F ⊆ int(V) = W(say).

Thus x ∈ U, F ⊆W, where U and W are disjoint open sets. Hence (X, τ) is regular.

Theorem 3.2. For an ideal topological space (X, τ,I), the following are equivalent:
(a) (X, τ) is normal.
(b) For each pair of disjoint closed sets F and K, there exist disjoint ∗-1-open sets U and V such that F ⊆ U
and K ⊆ V.
(c) For each closed set F and each open set V containing F, there exists a ∗-1-open set U such that
F ⊆ U ⊆ cl(U) ⊆ V.
(d) For each closed set F and each ∗-1-open set V containing F, there exists a ∗-1-open set U such that
F ⊆ U ⊆ cl(U) ⊆ int(V).
(e) For each ∗-1-closed set F and each open set V containing F, there exists a ∗-1-open set U such that
F ⊆ cl(F) ⊆ U ⊆ cl(U) ⊆ V.
Proof. (a)⇒ (b): Follows from the fact that every open set is a ∗-1-open set.
(b)⇒ (c): Let F be a closed set such that F ⊆ V, where V is open. Then F and X \ V are disjoint closed sets
and by (b), there exist disjoint ∗-1-open sets U and W such that F ⊆ U and X \ V ⊆ W. Now W is ∗-1-open
and X \ V ⊆W⇒ X \ V ⊆ int(W) (by Theorem 2.12). Thus F ⊆ U ⊆ cl(U) ⊆ cl(X \W) ⊆ V.
(c)⇒ (d): Let F be closed such that F ⊆ V, where V is ∗-1-open. Then by Theorem 2.12, F ⊆ int(V) and hence
by (c), there exists a ∗-1-open set U such that F ⊆ U ⊆ cl(U) ⊆ int(V).
(d)⇒ (e): Let F be a ∗-1-closed set such that F ⊆ V, where V is open. Then cl(F) ⊆ V and by (d), there exists
a ∗-1-open set U such that F ⊆ U ⊆ cl(U) ⊆ int(V) = V.
(e)⇒ (a): Let F and K be any two disjoint closed sets in X. Then F ⊆ X \ K where F is ∗-1-closed and so by
(e), there exists a ∗-1-open set U such that F ⊆ U ⊆ cl(U) ⊆ (X \ K). Since F is ∗-closed and F ⊆ U where U is
∗-1-open, by Theorem 2.12 we have, F ⊆ int(U). Put G = int(U) and H = X \ cl(U). Then G and H are disjoint
open sets such that F ⊆ G and K ⊆ H and hence X is normal.

We now define a stronger form of regularity as follows:

Definition 3.3. Let (X, τ,I) be an ideal topological space. Then X is said to be ∗-1-regular if for each
∗-1-closed set F and each x < F, there exist disjoint open sets U and V such that x ∈ U and F ⊆ V.

Remark 3.4. Since every closed set is ∗-1-closed, it follows that every ∗-1-regular space is regular. But the
converse is false as is shown by the following example.

Example 3.5. Let (X, τ,I) be an ideal topological space, where X = {a, b, c}, τ = {φ, {a}, {b, c},X} and
I = {φ, {c}}. Then τ∗ = {φ, {a}, {b}, {a, b}, {b, c},X}. Then (X, τ) is regular but is not ∗-1-regular. In fact, F = {c}
is ∗-1-closed and b < F but there are no disjoint open sets containing b and F.

The following result gives some equivalent conditions of ∗-1-regularity:

Theorem 3.6. Let (X, τ,I) be an ideal topological space. Then the following are equivalent:
(a) (X, τ) is ∗-1-regular.
(b) For each x ∈ X and each ∗-1-open set U containing x, there exists an open set V in X such that
x ∈ V ⊆cl(V) ⊆ U.
(c) For each x ∈ X and each ∗-1-closed set F with x < F, there exist disjoint open sets U and V such that x ∈ U
and cl(F) ⊆ V.
(d) For each ∗-1-closed set F and each point x ∈ X \ F, there exist open sets U and V of X such that x ∈ U,
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F ⊆ V and cl(U)
⋂

cl(V) = φ.
Proof. (a)⇒ (b): For a given x ∈ X, and any ∗-1-open set U containing x, there exist disjoint open sets V and
W such that x ∈ V and X \U ⊆W. Then cl(V) ⊆ U. Thus x ∈ V ⊆cl(V) ⊆ U.
(b)⇒ (a): Let x ∈ X and F be a ∗-1-closed set with x < F. Then by (b), there exists an open set V such that
x ∈ V ⊆ cl(V) ⊆ X \ F. Put W = X\cl(V) and then V and W strongly separate x and F.
(a)⇒ (c): For x ∈ X and a ∗-1-closed set F not containing x, there exist disjoint open sets U and V in X such
that x ∈ U and F ⊆ V. Since F is ∗-1-closed, cl(F) ⊆ V.
(c)⇒ (d): Let x ∈ X and F be a ∗-1-closed set not containing x. Then by (c), there exist disjoint open sets W
and V such that x ∈ W and cl(F) ⊆ V. Now cl(V) is ∗-1-closed and x <cl(V). Then again by (c), there exist
open sets G and H in X such that x ∈ G, cl(cl(V)) = cl(V) ⊆ H and G

⋂
H = φ. Now put U = W

⋂
G, then U

and V are open subsets of X such that x ∈ U, F ⊆ V and cl(U)
⋂

cl(V) = φ.
(d)⇒ (a): It is clear.

We now define another type of separation axiom in an ideal topological space as follows:

Definition 3.7. Let (X, τ,I) be an ideal topological space. Then (X, τ) is said to be ∗-1-normal if for each
pair of disjoint ∗-1-closed sets F and K, there exist disjoint open sets U and V in X such that F ⊆ U and K ⊆ V.

Remark 3.8. Since every closed set is ∗-1-closed for any ideal topological space (X, τ,I), every ∗-1-normal
space is normal. But the converse is false as is shown by the following example.

Example 3.9. Let X = {a, b, c, d}, τ = {φ, {a},X} and I = {φ}. Then (X, τ) is normal but not ∗-1-normal. In
fact, F = {a, b} and K = {c, d} are disjoint ∗-1-closed sets but they cannot be separated by disjoint open sets in X.

Theorem 3.10. Let (X, τ,I) be an ideal topological space. Then the following are equivalent:
(a) X is ∗-1-normal.
(b) For each ∗-1-closed set F and any ∗-1-open set U containing F, there exists an open set V of X such that
F ⊆ V ⊆cl(V) ⊆ U.
(c) For each pair of disjoint ∗-1-closed sets F and K, there exists an open set U in X containing F such that
cl(U)

⋂
K = φ.

(d) For each pair of disjoint ∗-1-closed sets F and K, there exist open sets U and V in X such that F ⊆ U,
K ⊆ V and cl(U)

⋂
cl(V) = φ.

Proof. We only prove ‘(a)⇒ (b)’; other implications viz. ‘(b) ⇒ (c) ⇒ (d) ⇒ (a)’ can be proved following
usual pattern. Let F be a ∗-1-closed set and U a ∗-1-open set such that F ⊆ U. Then by (a), there exist disjoint
open sets V and W such that F ⊆ V and X \U ⊆W. Thus F ⊆ V ⊆ cl(V) ⊆ (X \W) ⊆ U.

Theorem 3.11. Let (X, τ,I) be a ∗-1-normal ideal topological space. If F is a ∗-1-closed set and V be a ∗-1-open
set in X such that F ⊆ V, then there exists an open set U in X such that F ⊆ cl(F) ⊆ U ⊆ int(V) ⊆ V.
Proof. Let F be ∗-1-closed and V be a ∗-1-open set in X such that F ⊆ V. Then F and X \ V are disjoint
∗-1-closed sets and so by ∗-1-normality of X, there exist disjoint open sets U and W such that F ⊆ U and
X \ V ⊆ W. Since F ⊆ U and F is ∗-1-closed, cl(F) ⊆ U. Similarly cl(X \ V) ⊆ W. Now U ⊆ X \W ⊆ int(V).
Thus F ⊆ cl(F) ⊆ U ⊆ int(V) ⊆ V.

4. ∗-R0-Space and I -R0-space

The notion of R0-space, first introduced by Davis [1], has been studied by many topologists. In this sec-
tion, we introduce two kinds of separation axioms, one being stronger and another weaker than R0-spaces,
and obtain some characterizations of these spaces. We begin with the following definition recalled from [1].
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Definition 4.1. A topological space (X, τ) is said to be an R0-space if every open set contains the closure of
each of its singletons.

We now define as follows for an ideal topological space:

Definition 4.2. An ideal topological space (X, τ,I) is said to be
(i) a ∗-R0-space if for every ∗-open set U and each x ∈ U, one has cl({x}) ⊆ U i.e., every singleton is ∗-1-closed.
(ii) an I-R0-space if (x ∈ U, where U is open in X⇒ ({x})∗ ⊆ U) i.e., every singleton is I1-closed.

Remark 4.3. (a) Since every open set is ∗-open, it follows that every ∗-R0-space is an R0-space. But the
converse is false as is shown by the following Example 4.4.
(b) Since every 1-closed set is I1-closed, it follows that every R0-space is an I-R0-space. But the converse is
false. This is shown by Example 4.5.

Example 4.4. Let X = {a, b, c}, τ = {φ, {a}, {b, c},X} and I = {φ, {a}, {a, c}}. Then (X, τ) is an R0-space but
(X, τ,I) is not a ∗-R0-space.

Example 4.5. Consider an ideal topological space (X, τ,I), where X = {a, b, c}, τ = {φ, {a},X} and I = {φ, {a}}.
Then (X, τ) is not an R0-space as {a} is not 1-closed, although (X, τ,I) is an I-R0-space.

The following result gives some equivalent conditions of ∗-R0-property.

Theorem 4.6. For an ideal topological space (X, τ,I), the following are equivalent:
(a) (X, τ,I) is a ∗-R0-space.
(b) F is a ∗-closed set with x < F⇒ F ⊆ U and x < U for some U ∈ τ.
(c) F is a ∗-closed set with x < F⇒ F

⋂
cl({x}) = φ.

(d) For any two distinct points x and y of X, x < cl∗({y})⇒ cl({x})
⋂

cl∗({y}) = φ.
Proof. (a)⇒ (b): Let F be a ∗-closed set and x < F. Then x ∈ X\F and so by (a), cl({x}) ⊆ X\F⇒ F ⊆ X\cl({x}).
Put X \ cl({x}) = U. Then U is an open set in X such that F ⊆ U and x < U.
(b)⇒ (c): Let F be a ∗-closed set and x < F. Then by (b), there exists an open set U in X such that F ⊆ U and
x < U. Thus U

⋂
cl({x}) = φ and hence F

⋂
cl({x}) = φ.

(c)⇒ (d): It is clear.
(d)⇒ (a): Let x ∈ U, where U is ∗-open. Then for each y < U, x < cl∗({y}) and hence by (d), cl({x}

⋂
cl∗({y}) = φ,

for each y < U ⇒ cl({x}
⋂

[
⋃
{cl∗({y}) : y ∈ X \ U}] = φ. Now U is ∗-open and y ∈ X \ U ⇒ {y} ⊆ cl∗({y}) ⊆

cl∗(X \U) = X \U. Thus X \U =
⋃
{cl∗({y}) : y ∈ X \U}. Therefore cl({x})

⋂
(X \U) = φ i.e., cl({x}) ⊆ U. Hence

(X, τ,I) is a ∗-R0-space.

The following result gives some more characterizations of ∗-R0-spaces:

Theorem 4.7. For an ideal topological space (X, τ,I), the following are equivalent:
(a) (X, τ,I) is a ∗-R0-space.
(b) For each (φ ,)A ⊆ X and ∗-open set U with A

⋂
U , φ, there exists a closed set F such that A

⋂
F , φ

and F ⊆ U.
(c) For each ∗-open set U, U =

⋃
{F : F is closed and F ⊆ U}.

(d) For each ∗-closed set F, F =
⋂
{U : U is open and F ⊆ U}.

Proof. (a) ⇒ (b) : Let A(⊆ X) be such that A
⋂

U , φ where U is ∗-open. Let x ∈ A
⋂

U. Now, x ∈ U ⇒
cl({x}) ⊆ U. Let cl({x}) = F. Then F is a closed set with F ⊆ U and A

⋂
F , φ.

(b)⇒ (c) : Let U be ∗-open. Now
⋃
{F : F is closed and F ⊆ U} ⊆ U. Let x ∈ U. Then by (b) there exists a

closed set F containing x and F ⊆ U. Thus x ∈ F ⊆
⋃
{K : K is closed and K ⊆ U}. Therefore for each ∗-open

set U, U =
⋃
{F : F is closed and F ⊆ U}.

(c)⇒ (d) : It is clear.
(d)⇒ (a) : Let U be a ∗-open set and let x ∈ U. We need to show that cl{x} ⊆ U. If not, then there exists an
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y ∈ cl{x} such that y < U. As U is a ∗-open neighbourhood of each of its points, it follows that cl∗{y}
⋂

U = φ.
Now, cl∗{y} is ∗-closed set and hence by (d), cl∗{y} =

⋂
{V : V is open in X and cl∗{y} ⊆ V} so that (

⋂
{V : V is

open in X and cl∗{y} ⊆ V})
⋂

U = φ i.e., x <
⋂
{V : V is open in X and cl∗{y} ⊆ V} ⇒ there exists an open set

V in X such that x < V and cl∗{y} ⊆ V. As V is open set containing y such that x < V, we have y < cl{x}, a
contradiction.

Theorem 4.8. Let (X, τ,I) be an ideal topological space. Then the following are equivalent:
(a) (X, τ,I) is a ∗-R0-space.
(b) For any two distinct points x and y, x ∈ cl∗({y}) if and only if y ∈ cl({x}).
Proof. (a)⇒ (b) : Let x ∈ cl∗({y}) and U be an open set containing y. Then using (a), we have cl({y}) ⊆ U.
Thus cl∗({y}) ⊆ cl({y}) ⊆ U⇒ x ∈ U⇒ y ∈ cl({x}). Again, let y ∈ cl({x}) and U be any ∗-open set containing x.
Then by (a), we have cl({x}) ⊆ U⇒ y ∈ U⇒ x ∈ cl∗({y}).
(b) ⇒ (a) : Let U be any ∗-open set and x ∈ U. If (x ,)y < U then x < cl∗({y}) and hence y < cl({x}). This
shows that cl({x}) ⊆ U. Hence (X, τ,I) is a ∗-R0-space.

The following theorem gives some characterizations of I-R0-spaces:

Theorem 4.9. For an ideal topological space (X, τ,I), the following are equivalent:
(a) (X, τ,I) is an I-R0-space.
(b) For each x ∈ U, where U is open in X, cl∗({x}) ⊆ U.
(c) For each closed set F with x < F, F ⊆ U and x < U for some ∗-open set U.
(d) For each closed set F with x < F, F

⋂
cl∗({x}) = φ.

(e) For any two distinct points x and y of X, x < cl({y})⇒ cl∗({x})
⋂

cl({y}) = φ.
Proof. (a)⇒ (b): Let U be open in X and x ∈ U. Then by (a), ({x})∗ ⊆ U. Thus cl∗({x}) = {x}

⋃
({x})∗ ⊆ U.

(b)⇒ (c): Let F be closed and x < F. Then x ∈ X \ F and so by (b), cl∗({x}) ⊆ X \ F i.e., F ⊆ X \ cl∗({x}). Put
U = X \ cl∗({x}). Then U is ∗-open such that F ⊆ U and x < U.
(c)⇒ (d): Let F closed in X and x < F. Then by (c), there exists a ∗-open set U such that F ⊆ U and x < U,
and so U

⋂
cl∗({x}) = φ. Consequently, F

⋂
cl∗({x}) = φ.

(d)⇒ (e): It is clear.
(e) ⇒ (a): Let U be open in X and x ∈ U. Then for each y ∈ X \ U, x < cl({y}). Therefore by (e),
cl∗({x})

⋂
cl({y}) = φ for each y ∈ X \ U ⇒ cl∗({x})

⋂
[
⋃
{cl({y}) : y ∈ X \ U] = φ ⇒ cl∗({x})

⋂
(X \ U) = φ ⇒

cl∗({x}) ⊆ U. Hence (X, τ,I) is an I-R0-space.
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